260 research outputs found

    Mass spectrometry-based proteomics in the life sciences: a review

    Get PDF
    Proteomics concerns itself with the characterization and function of all cellular proteins, the ultimate determinants of cellular function. Mass spectrometry has emerged as the preferred method for in-depth characterization of the protein components of biological systems. Using mass spectrometry, key insights into the composition, regulation and function of molecular complexes and pathways have been gained. Now days, mass spectrometry-based proteomics has become an indispensable tool in the cellular and molecular life sciences. This review discusses current mass spectrometry-based proteomics technologies

    Feasibility of wind power integration in weak grids in non-coastal areas of Sub-Saharan Africa: the case of Mali

    Get PDF
    Installed wind capacity in Africa has grown rapidly the last few years, and by late 2016 had reached about 4.8 GW. However, so far few investments have been made in inland localities due to the generally lower wind potential. This paper therefore explores if and to what extent it is possible to establish economically feasible wind-power plants in countries with lower wind potential. To address this question, the paper provides a combined wind resource mapping and a pre-feasibility study for grid integration of wind power at four specific sites in Mali. The study finds that Mali has generally poor wind conditions, with average wind speeds of below 5 m/s at 50 m above ground level in the south, while there are larger areas in the northern part with average wind speeds of above 7 m/s at 50 m above ground level. Overall the research shows that in countries with generally poor wind conditions, such as in the southern part of Mali, it is possible to identify a limited number of sites with local speed-up effects situated close to the existing grid, at which there are options for undertaking medium-size wind-power projects that would be economically feasible at current crude oil prices of 50 USD/barrel

    EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin

    Get PDF
    Electron paramagnetic resonance (EPR) data reveal large differences between the ferric (C-)cyanide complexes of wild-type human neuroglobin (NGB) and its H64Q and F28L point mutants and the cyanide complexes of mammalian myo-and haemoglobin. The point mutations, which involve residues comprising the distal haem pocket in NGB, induce smaller, but still significant changes, related to changes in the stabilization of the cyanide ligand. Furthermore, for the first time, the full C hyperfine tensor of the cyanide carbon of cyanide-ligated horse heart myoglobin (hhMb) was determined using Davies ENDOR (electron nuclear double resonance). Disagreement of these experimental data with earlier predictions based on C NMR data and a theoretical model reveal significant flaws in the model assumptions. The same ENDOR procedure allowed also partial determination of the corresponding C hyperfine tensor of cyanide-ligated NGB and H64QNGB. These C parameters differ significantly from those of cyanide-ligated hhMb and challenge our current theoretical understanding of how the haem environment influences the magnetic parameters obtained by EPR and NMR in cyanide-ligated haem proteins

    Wide diversity in structure and expression profiles among members of the Caenorhabditis elegans globin protein family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence of high throughput genome sequencing facilities and powerful high performance bioinformatic tools has highlighted hitherto unexpected wide occurrence of globins in the three kingdoms of life. <it>In silico </it>analysis of the genome of <it>C. elegans </it>identified 33 putative globin genes. It remains a mystery why this tiny animal might need so many globins. As an inroad to understanding this complexity we initiated a structural and functional analysis of the globin family in <it>C. elegans</it>.</p> <p>Results</p> <p>All 33 <it>C. elegans </it>putative globin genes are transcribed. The translated sequences have the essential signatures of single domain <it>bona fide </it>globins, or they contain a distinct globin domain that is part of a larger protein. All globin domains can be aligned so as to fit the globin fold, but internal interhelical and N- and C-terminal extensions and a variety of amino acid substitutions generate much structural diversity among the globins of <it>C. elegans</it>. Likewise, the encoding genes lack a conserved pattern of intron insertion positioning. We analyze the expression profiles of the globins during the progression of the life cycle, and we find that distinct subsets of globins are induced, or repressed, in wild-type dauers and in <it>daf-2(e1370)</it>/insulin-receptor mutant adults, although these animals share several physiological features including resistance to elevated temperature, oxidative stress and hypoxic death. Several globin genes are upregulated following oxygen deprivation and we find that HIF-1 and DAF-2 each are required for this response. Our data indicate that the DAF-2 regulated transcription factor DAF-16/FOXO positively modulates <it>hif-1 </it>transcription under anoxia but opposes expression of the HIF-1 responsive globin genes itself. In contrast, the canonical globin of <it>C. elegans</it>, ZK637.13, is not responsive to anoxia. Reduced DAF-2 signaling leads to enhanced transcription of this globin and DAF-16 is required for this effect.</p> <p>Conclusion</p> <p>We found that all 33 putative globins are expressed, albeit at low or very low levels, perhaps indicating cell-specific expression. They show wide diversity in gene structure and amino acid sequence, suggesting a long evolutionary history. Ten globins are responsive to oxygen deprivation in an interacting HIF-1 and DAF-16 dependent manner. Globin ZK637.13 is not responsive to oxygen deprivation and regulated by the Ins/IGF pathway only suggesting that this globin may contribute to the life maintenance program.</p

    A phylogenomic profile of globins

    Get PDF
    BACKGROUND: Globins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins. The latter comprise the flavohemoglobins with a C-terminal FAD-binding domain and the gene-regulating globin coupled sensors, with variable C-terminal domains. The single-domain globins encompass sequences related to chimeric globins and «truncated» hemoglobins with a 2-over-2 instead of the canonical 3-over-3 α-helical fold. RESULTS: A census of globins in 26 archaeal, 245 bacterial and 49 eukaryote genomes was carried out. Only ~25% of archaea have globins, including globin coupled sensors, related single domain globins and 2-over-2 globins. From one to seven globins per genome were found in ~65% of the bacterial genomes: the presence and number of globins are positively correlated with genome size. Globins appear to be mostly absent in Bacteroidetes/Chlorobi, Chlamydia, Lactobacillales, Mollicutes, Rickettsiales, Pastorellales and Spirochaetes. Single domain globins occur in metazoans and flavohemoglobins are found in fungi, diplomonads and mycetozoans. Although red algae have single domain globins, including 2-over-2 globins, the green algae and ciliates have only 2-over-2 globins. Plants have symbiotic and nonsymbiotic single domain hemoglobins and 2-over-2 hemoglobins. Over 90% of eukaryotes have globins: the nematode Caenorhabditis has the most putative globins, ~33. No globins occur in the parasitic, unicellular eukaryotes such as Encephalitozoon, Entamoeba, Plasmodium and Trypanosoma. CONCLUSION: Although Bacteria have all three types of globins, Archaeado not have flavohemoglobins and Eukaryotes lack globin coupled sensors. Since the hemoglobins in organisms other than animals are enzymes or sensors, it is likely that the evolution of an oxygen transport function accompanied the emergence of multicellular animals

    Estimation of wind and solar resources in Mali

    Get PDF

    The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globin isoforms with variant properties and functions have been found in the pseudocoel, body wall and cuticle of various nematode species and even in the eyespots of the insect-parasite <it>Mermis nigrescens</it>. In fact, much higher levels of complexity exist, as shown by recent whole genome analysis studies. <it>In silico </it>analysis of the genome of <it>Caenorhabditis elegans </it>revealed an unexpectedly high number of globin genes featuring a remarkable diversity in gene structure, amino acid sequence and expression profiles.</p> <p>Results</p> <p>In the present study we have analyzed whole genomic data from <it>C. briggsae</it>, <it>C. remanei</it>, <it>Pristionchus pacificus </it>and <it>Brugia malayi </it>and EST data from several other nematode species to study the evolutionary history of the nematode globin gene family. We find a high level of conservation of the <it>C. elegans </it>globin complement, with even distantly related nematodes harboring orthologs to many <it>Caenorhabditis </it>globins. Bayesian phylogenetic analysis resolves all nematode globins into two distinct globin classes. Analysis of the globin intron-exon structures suggests extensive loss of ancestral introns and gain of new positions in deep nematode ancestors, and mainly loss in the <it>Caenorhabditis </it>lineage. We also show that the <it>Caenorhabditis </it>globin genes are expressed in distinct, mostly non-overlapping, sets of cells and that they are all under strong purifying selection.</p> <p>Conclusion</p> <p>Our results enable reconstruction of the evolutionary history of the globin gene family in the nematode phylum. A duplication of an ancestral globin gene occurred before the divergence of the Platyhelminthes and the Nematoda and one of the duplicated genes radiated further in the nematode phylum before the split of the Spirurina and Rhabditina and was followed by further radiation in the lineage leading to <it>Caenorhabditis</it>. The resulting globin genes were subject to processes of subfunctionalization and diversification leading to cell-specific expression patterns. Strong purifying selection subsequently dampened further evolution and facilitated fixation of the duplicated genes in the genome.</p

    CO rebinding kinetics and molecular dynamics simulations highlight dynamic regulation of internal cavities in human cytoglobin

    Get PDF
    Cytoglobin (Cygb) was recently discovered in the human genome and localized in different tissues. It was suggested to play tissue-specific protective roles, spanning from scavenging of reactive oxygen species in neurons to supplying oxygen to enzymes in fibroblasts. To shed light on the functioning of such versatile machinery, we have studied the processes supporting transport of gaseous heme ligands in Cygb. Carbon monoxide rebinding shows a complex kinetic pattern with several distinct reaction intermediates, reflecting rebinding from temporary docking sites, second order recombination, and formation (and dissociation) of a bis-histidyl heme hexacoordinated reaction intermediate. Ligand exit to the solvent occurs through distinct pathways, some of which exploit temporary docking sites. The remarkable change in energetic barriers, linked to heme bis-histidyl hexacoordination by HisE7, may be responsible for active regulation of the flux of reactants and products to and from the reaction site on the distal side of the heme. A substantial change in both protein dynamics and inner cavities is observed upon transition from the CO-liganded to the pentacoordinated and bis-histidyl hexacoordinated species, which could be exploited as a signalling state. These findings are consistent with the expected versatility of the molecular activity of this protein
    • …
    corecore